If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25z^2+223=150z
We move all terms to the left:
25z^2+223-(150z)=0
a = 25; b = -150; c = +223;
Δ = b2-4ac
Δ = -1502-4·25·223
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-10\sqrt{2}}{2*25}=\frac{150-10\sqrt{2}}{50} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+10\sqrt{2}}{2*25}=\frac{150+10\sqrt{2}}{50} $
| 3(2y+6)=8y+36+4y | | 9x-15+12x-1=53 | | (x/7)-8=15 | | 4x+2/3=10 | | 42-9=35x+12 | | 2(9/3)=5s/2-s/4 | | 3(x+4)^(1/2)-2x=9 | | 4x+1.4=39.4 | | 8x-10=-4x+2 | | 29/3=5s/2-s/4 | | 5x2+7x=6 | | 3(x+4)^1/2-2x=9 | | (9+z)(3z+5)=0 | | 3x^2+4=5x^-4 | | -4.9x^2+76x+87=0 | | 12x-1+53+9x-15=180 | | -4.9t^2+76t+87=0 | | -43=x/4 | | 14=5x^2-33x | | 3/5x+1/2=7/6 | | 10-x-4x+8=-17 | | 20-10d+3+7d=0 | | 53+12x-1=9x-15 | | 12-8n-14=8n+18-6n | | 7a+4a/5=7a | | 12m-5=3m-32 | | 2/3x^2+1=7 | | 5x-10=-6x+1 | | -9/x=81 | | 72=7u+u | | 36x^2+26x-196=0 | | 2x+3(4x-1)=2(2x+3)+4x |